Skip to content

11 线程安全

定义

Brian Goetz:当多个线程同时访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果,那就称这个对象是线程安全的

线程安全的代码都必须具备一个共同特征:代码本身封装了所有必要的正确性保障手段(如互斥同步等),令调用者无须关心多线程下的调用问题,更无须自己实现任何措施来保证多线程环境下的正确调用

五类数据

将Java语言中各种操作共享的数据分为以下五类:不可变、绝对线程安全、相对线程安全、线程兼容和线程对立。

不可变

不可变(Immutable)的对象一定是线程安全的,无论是对象的方法实现还是方法的调用者,都不需要再进行任何线程安全保障措施

如果多线程共享的数据是一个基本数据类型,那么只要在定义时使用final关键字修饰它就可以保证它是不可变的。

如果共享数据是一个对象,就需要对象自行保证其行为不会对其状态产生任何影响才行

保证对象行为不影响自己状态的途径有很多种,最简单的一种就是把对象里面带有状态的变量都声明为final,这样在构造函数结束之后,它就是不可变的

绝对的线程安全

能够完全满足Brian Goetz给出的线程安全的定义

java.util.Vector是一个线程安全的容器,因为它的add()、get()和size()等方法都是被synchronized修饰的,尽管这样效率不高,但保证了具备原子性、可见性和有序性。

不过,即使它所有的方法都被修饰成synchronized,也不意味着调用它的时候就永远都不再需要同步手段了:在多线程的环境中,如果不在方法调用端做额外的同步措施,代码仍然是不安全的

相对线程安全

就是我们通常意义上所讲的线程安全,它需要保证对这个对象单次的操作是线程安全的,我们在调用的时候不需要进行额外的保障措施,但是对于一些特定顺序的连续调用,就可能需要在调用端使用额外的同步手段来保证调用的正确性。

举例:Vector、HashTable、Collections的synchronizedCollection()方法包装的集合等

线程兼容

指对象本身并不是线程安全的,但是可以通过在调用端正确地使用同步手段来保证对象在并发环境中可以安全地使用。我们平常说一个类不是线程安全的,通常就是指这种情况。

Java类库API中大部分的类都是线程兼容的,如ArrayList和HashMap等

线程对立

指不管调用端是否采取了同步措施,都无法在多线程环境中并发使用代码

举例:Thread类的suspend()和resume()方法。如果有两个线程同时持有一个线程对象,一个尝试去中断线程,一个尝试去恢复线程,在并发进行的情况下,无论调用时是否进行了同步,目标线程都存在死锁风险——假如suspend()中断的线程就是即将要执行resume()的那个线程,那就肯定要产生死锁了

线程安全的实现方法

互斥同步

同步是指在多个线程并发访问共享数据时,保证共享数据在同一个时刻只被一条(或者是一些,当使用信号量的时候)线程使用。

互斥是实现同步的一种手段,临界区、互斥量和信号量都是常见的互斥实现方式

互斥是方法,同步是目的

synchronized关键字

最基本的互斥同步手段就是synchronized关键字

synchronized关键字经过Javac编译之后,会在同步块的前后分别形成monitorenter和monitorexit这两个字节码指令。这两个字节码指令都需要一个reference类型的参数来指明要锁定和解锁的对象。如果Java源码中的synchronized明确指定了对象参数,那就以这个对象的引用作为reference;如果没有明确指定,那将根据synchronized修饰的方法类型(如实例方法或类方法),来决定是取代码所在的对象实例还是取类型对应的Class对象来作为线程要持有的锁

在执行monitorenter指令时,首先要去尝试获取对象的锁。如果这个对象没被锁定,或者当前线程已经持有了那个对象的锁,就把锁的计数器的值增加一,而在执行monitorexit指令时会将锁计数器的值减一。一旦计数器的值为零,锁随即就被释放了。如果获取对象锁失败,那当前线程就应当被阻塞等待,直到请求锁定的对象被持有它的线程释放为止

两个关于synchronized的直接推论:

  • 被synchronized修饰的同步块对同一条线程来说是可重入的。这意味着同一线程反复进入同步块也不会出现自己把自己锁死的情况。
  • 被synchronized修饰的同步块在持有锁的线程执行完毕并释放锁之前,会无条件地阻塞后面其他线程的进入。这意味着无法像处理某些数据库中的锁那样,强制已获取锁的线程释放锁;也无法强制正在等待锁的线程中断等待或超时退出

ReentrantLock

自JDK 5起(实现了JSR 166),Java类库中新提供了java.util.concurrent包,其中的java.util.concurrent.locks.Lock接口便成了Java的另一种全新的互斥同步手段。基于Lock接口,用户能够以非块结构来实现互斥同步,从而摆脱了语言特性的束缚,改为在类库层面去实现同步

重入锁(ReentrantLock)是Lock接口最常见的一种实现,它与synchronized一样是可重入的。

在基本用法上,ReentrantLock也与synchronized很相似,只是代码写法上稍有区别而已。

ReentrantLock与synchronized相比增加了一些高级功能,主要有以下三项:等待可中断、可实现公平锁及锁可以绑定多个条件。

  • 等待可中断:是指当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。可中断特性对处理执行时间非常长的同步块很有帮助。
  • 公平锁:是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁;而非公平锁则不保证这一点,在锁被释放时,任何一个等待锁的线程都有机会获得锁。synchronized中的锁是非公平的,ReentrantLock在默认情况下也是非公平的,但可以通过带布尔值的构造函数要求使用公平锁。不过一旦使用了公平锁,将会导致ReentrantLock的性能急剧下降,会明显影响吞吐量
  • 锁绑定多个条件:是指一个ReentrantLock对象可以同时绑定多个Condition对象。在synchronized中,锁对象的wait()跟它的notify()或者notifyAll()方法配合可以实现一个隐含的条件,如果要和多于一个的条件关联的时候,就不得不额外添加一个锁;而ReentrantLock则无须这样做,多次调用newCondition()方法即可

建议

在synchronized与ReentrantLock都可满足需要时优先使用synchronized:

  • synchronized是在Java语法层面的同步,足够清晰,也足够简单。每个Java程序员都熟悉synchronized,但J.U.C中的Lock接口则并非如此。因此在只需要基础的同步功能时,更推荐synchronized
  • Lock应该确保在finally块中手动释放锁,否则一旦受同步保护的代码块中抛出异常,则有可能永远不会释放持有的锁。这一点必须由程序员自己来保证,而使用synchronized的话则可以由Java虚拟机来确保即使出现异常,锁也能被自动释放
  • 从长远来看,Java虚拟机更容易针对synchronized来进行优化,因为Java虚拟机可以在线程和对象的元数据中记录synchronized中锁的相关信息,而使用J.U.C中的Lock的话,Java虚拟机是很难得知具体哪些锁对象是由特定线程锁持有的

非阻塞同步

不管风险,先进行操作,如果没有其他线程争用共享数据,那操作就直接成功了;如果共享的数据的确被争用,产生了冲突,那再进行其他的补偿措施,最常用的补偿措施是不断地重试,直到出现没有竞争的共享数据为止。

这种乐观并发策略的实现不再需要把线程阻塞挂起,因此这种同步操作被称为非阻塞同步,使用这种措施的代码也常被称为无锁编程。

比较并交换(Compare-and-Swap,CAS)

无同步方案

天生线程安全

举例:

可重入代码:这种代码又称纯代码,是指可以在代码执行的任何时刻中断它,转而去执行另外一段代码(包括递归调用它本身),而在控制权返回后,原来的程序不会出现任何错误,也不会对结果有所影响。

并非所有的线程安全的代码都是可重入的。

可重入代码有一些共同的特征,例如,不依赖全局变量、存储在堆上的数据和公用的系统资源,用到的状态量都由参数中传入,不调用非可重入的方法等。

我们可以通过一个比较简单的原则来判断代码是否具备可重入性:如果一个方法的返回结果是可以预测的,只要输入了相同的数据,就都能返回相同的结果,那它就满足可重入性的要求,当然也就是线程安全的。

线程本地存储:如果一段代码中所需要的数据必须与其他代码共享,那就看看这些共享数据的代码是否能保证在同一个线程中执行。如果能保证,我们就可以把共享数据的可见范围限制在同一个线程之内,这样,无须同步也能保证线程之间不出现数据争用的问题。

Java语言中,如果一个变量要被多线程访问,可以使用volatile关键字将它声明为“易变的”

如果一个变量只要被某个线程独享,可以通过java.lang.ThreadLocal类来实现线程本地存储的功能。

每一个线程的Thread对象中都有一个ThreadLocalMap对象,这个对象存储了一组以ThreadLocal.threadLocalHashCode为键,以本地线程变量为值的K-V值对,ThreadLocal对象就是当前线程的ThreadLocalMap的访问入口,每一个ThreadLocal对象都包含了一个独一无二的threadLocalHashCode值,使用这个值就可以在线程K-V值对中找回对应的本地线程变量